PROBLEM 1

Calculate the integral
$$\iint_{S} \hat{e}_{\varphi} \times \hat{n} dS$$

where S is: $x^{2} + y^{2} + z^{2} = 1$ $x, y, z \ge 0$
 $\hat{n} \cdot \hat{e}_{z} \le 0$

PROBLEM 2
Show that the line integral
$$\int_{P}^{Q} \left(\frac{1}{r}\hat{e}_{r} + \frac{1}{r\sin\theta}\hat{e}_{\varphi}\right) \cdot d\overline{r}$$

from point P:
$$(r, \theta, \varphi) = \left(1, \frac{\pi}{2}, \frac{\pi}{2}\right)$$

till point Q: $(r, \theta, \varphi) = \left(3, \frac{\pi}{4}, \frac{3\pi}{2}\right)$

is independent from the integration path. For simplicity, assume that the path does not intersect the plane $\varphi = \pi$ neither the z-axis.

Calculate the value of the line integral.

PROBLEM 3

Consider the following vector field:

$$\overline{A} = \frac{1}{r^3} \left(\cos 2\theta \hat{e}_{\theta} - \sin 2\theta \hat{e}_r \right)$$

- (a) Calculate $rot \bar{A}$
- (b) Calculate $div \bar{A}$
- (c) Has the vector field a potential: $\overline{A} = grad\psi$? Justify the answer and (if positive) calculate ψ

PROBLEM 4

Calculate $\nabla^2 \hat{e}_{\varphi}$ where \hat{e}_{φ} is a base vector in cylindrical coordinates.

Use the following expression : $\nabla^2 \hat{e}_{\varphi} = \nabla \left(\nabla \cdot \hat{e}_{\varphi} \right) - \nabla \times \left(\nabla \times \hat{e}_{\varphi} \right)$